1

$$
\begin{array}{rlr}
\omega_{1}^{2} & =\omega_{0}{ }^{2}+2 \dot{\omega} \theta & \left.\quad \text { (equivalent of the linear } \mathrm{v}^{2}=u^{2}+2 a s\right) \\
25^{2} & =15^{2}+2 \times \dot{\omega} \times 160 \\
\dot{\omega} & =\mathbf{1} \cdot \mathbf{2 5} \mathrm{rads}^{-1} & \tag{2}
\end{array}
$$

$$
\begin{equation*}
t=\frac{\omega_{1}-\omega_{0}}{\dot{\omega}}=\frac{25-15}{1 \cdot 25}=8 \mathrm{~s} \tag{2}
\end{equation*}
$$

2

$$
I=\frac{4}{3}(2 m) a^{2}+\frac{4}{3} m\left(\frac{1}{2} a\right)^{2}=\frac{4}{3} m a^{2}\left(2+\frac{1}{4}\right)=\frac{4}{3} m a^{2} \times \frac{9}{4}=\mathbf{3} \mathbf{m a}^{2} \quad \text { (show) }
$$ perpendicular axes rule ...

$$
I_{A}=I_{A B}+I_{A F}=3 m a^{2}+3 m a^{2}=\mathbf{6} \boldsymbol{m} \mathbf{a}^{2}
$$

3
energy considerations ...
K.E. gained $=$ loss in G.P.E. - work done by friction

$$
\begin{aligned}
\frac{1}{2} I \omega^{2} & =m g h-C \theta \\
\frac{1}{2} \cdot\left(\frac{4}{3} \times 0 \cdot 75 \times 0 \cdot 8^{2}\right) 3^{2} & =0 \cdot 75 \times 9 \cdot 8 \times 0 \cdot 8-C \times \frac{\pi}{2} \\
C & =\frac{6}{\pi}=1 \cdot 90985 \ldots=\mathbf{1} \cdot \mathbf{9 1} \mathrm{Nm}
\end{aligned}
$$

conservation of angular momentum ...

$$
\begin{aligned}
(0 \cdot 56+0 \cdot 64) \omega & =0 \cdot 56 \times 4 \cdot 2+0 \cdot 64 \times{ }^{-} 3 \\
\boldsymbol{w} & =\mathbf{0} \cdot \mathbf{3 6} \mathbf{r a d ~ s}^{-1}
\end{aligned}
$$

4
For B to get as close as possible to C, then ${ }_{B} \mathbf{v}_{C}$ must be as close to due east as possible \ldots

$$
{ }_{B} \mathbf{v}_{C}={ }_{B} \mathbf{v}_{G}-{ }_{C} \mathbf{v}_{G}
$$

$$
\begin{aligned}
\text { bearing on which } B \text { must sail } & =\cos ^{-1}(11 / 12) \\
& =23 \cdot 5564 \ldots=\mathbf{0 2 3} \cdot \mathbf{6}^{\circ}
\end{aligned}
$$

minimum separation between B and $C=2000 \sin \theta$

$$
\begin{aligned}
& =2000 \sqrt{1-\left(\frac{11}{12}\right)^{2}} \\
& =799 \cdot 305 \ldots \\
& =799 \mathbf{m} \quad(3 \text { s.f. })
\end{aligned}
$$

5
mass $=350 \int_{0}^{8} \pi x^{\frac{2}{3}} \mathrm{~d} x=350 \pi\left[\frac{3}{5} x^{\frac{5}{3}}\right]_{0}^{8}=210 \pi \times 32=\mathbf{6 7 2 0} \boldsymbol{\pi} \quad$ (show)
mass of 'elemental disc' $=\rho \pi y^{2} \delta x=350 \pi x^{\frac{2}{3}} \delta x=350 \pi x^{\frac{2}{3}} \delta x$

$$
6720 \pi \bar{x}=\int_{0}^{8} x\left(350 \pi x^{\frac{2}{3}}\right) \mathrm{d} x=350 \pi\left[\frac{3}{8} x^{\frac{8}{3}}\right]_{0}^{8}=\frac{525}{4} \pi \times 256 \quad \overline{\boldsymbol{x}}=\frac{33600}{6720}=\mathbf{5}
$$

M.o.I. of 'elemental disc' $=\frac{1}{2} m r^{2}=\frac{1}{2}\left(350 \pi x^{\frac{2}{3}} \delta x\right) x^{\frac{2}{3}}=175 \pi x^{\frac{4}{3}} \delta x$

$$
I=\int_{0}^{8} 175 \pi x^{\frac{4}{3}} \mathrm{~d} x=175 \pi\left[\frac{3}{7} x^{\frac{7}{3}}\right]_{0}^{8}=75 \pi \times 128=\mathbf{9 6 0 0} \boldsymbol{\pi} \mathbf{k g} \mathbf{m}^{\mathbf{2}}
$$

6
$I=\frac{1}{2} m r^{2}+M r^{2}=\frac{1}{2} \times 0 \cdot 08 \times 0 \cdot 35^{2}+0 \cdot 24 \times 0 \cdot 35^{2}=\mathbf{0} \cdot \mathbf{0 3 4 3} \mathbf{~ k g ~ m}^{2}$
$0 \cdot 32 \bar{x}=0 \cdot 08 \times 0+0 \cdot 24 \times 0 \cdot 35$

$$
\bar{x}=0 \cdot 2625
$$

when $O P$ is horizontal ...

$$
\begin{aligned}
C & =I \alpha \\
0 \cdot 32 \times 9 \cdot 8 \times 0 \cdot 2625 & =0 \cdot 0343 \alpha \\
\boldsymbol{\alpha} & =\mathbf{2 4} \mathbf{r a d ~ s}^{-2}
\end{aligned}
$$

$\mathrm{N} 2(\leftarrow)$

$$
\begin{aligned}
& H=m\left(r \omega^{2}\right)=0 \cdot 32 \times 0 \cdot 2625 \times 5^{2}=2 \cdot 1 \\
& 3 \cdot 136-V=m(r \alpha) \\
& \quad V=3 \cdot 136-0 \cdot 32 \times 0 \cdot 2625 \times 24=1 \cdot 12
\end{aligned}
$$

hence the magnitude of the force $=\sqrt{2 \cdot 1^{2}+1 \cdot 12^{2}}=\mathbf{2} \cdot \mathbf{3 8} \mathbf{N}$

$$
\begin{aligned}
V & =\text { G.P.E. of rod }+ \text { E.P.E. of } R_{1} B+\text { E.P.E. of } R_{2} B \\
& =m g(a \cos \theta)+\frac{1}{2} \cdot \frac{1}{\frac{1}{2} m g} a\left\{(2 a+2 a \sin \theta)^{2}+(2 a-2 a \sin \theta)^{2}\right\} \\
& =m g a \cos \theta+\frac{1}{2} m g a\left(2+2 \sin ^{2} \theta\right) \\
& =\boldsymbol{m g a}\left(\mathbf{1}+\cos \boldsymbol{\theta}+\sin ^{2} \boldsymbol{\theta}\right)
\end{aligned}
$$

conservation of mechanical energy ...

$$
\begin{aligned}
m g a\left(1+\cos \theta+\sin ^{2} \theta\right)+\frac{1}{2}\left(\frac{4}{3} m a^{2}\right) \dot{\theta}^{2} & =\text { constant } \\
\operatorname{dg} t) \dot{\mathrm{d}}(2 \sin \theta \cos \theta-\sin \theta)+\frac{4}{3} m g a \dot{\theta} \ddot{\theta} & =0 \\
\ddot{\theta} & =-\left(\frac{3 g}{4 a}\right) \sin \theta(2 \cos \theta-1)
\end{aligned}
$$

for small oscillations $\sin \theta \approx \theta$ and $\cos \theta \approx 1$

$$
\ddot{\theta} \approx{ }^{-}\left(\frac{3 g}{4 a}\right) \theta
$$

and so we have approximate SHM with period

$$
T=2 \pi \sqrt{\frac{4 a}{3 g}}=4 \pi \sqrt{\frac{\mathbf{a}}{3 g}}
$$

